

Ivan J Chavez MD

• History

- 60 y/o male
- No prior history of CAD
- In car at casino complaining of chest pain
- Depression, Smoker
- FH: Father PE, mother renal transplant, brother hyperlipidemia
- Exam
 - Pale, diaphoretic, confused
 - SBP=100, cool extremities

ECG

Case

- ED course
 - Progressively obtunded
 - Level 1 activated
 - Ticagrelor 180mg, heparin 4000U, ASA
 - Multiple episodes of ventricular tachycardia
 - Multiple defibrillation, CPR
 - Progressive shock, Intubated
 - External cooling, Lucas, transfer to ANW
 - Labs: pH: 6.8 pO2: 54 pCO2: 58.5 bicarbonate:
 - 9.8, lactate 10.5

Case Summary

- Acute STEMI
- VT/VF arrest
- Cardiogenic shock
- Recurrent cardiac arrest and refractory shock
 - LUCAS dependent upon arrival (110 minutes)

Next Steps

- Is this patient dead?
- Basic Life Support (BLS)
- Advanced Cardiopulmonary Life Support (ACLS)

Next Steps

- · Is this patient dead?
- Basic Life Support (BLS)
- Advanced Cardiopulmonary Life Support (ACLS)
- ECMO Cardiopulmonary Life Support (ECLS)

ECPR

- Definition
- Purpose
- Evidence
- Indications
- Methods
- Outcomes

ECPR Definition

The utilization of extra-corporeal membrane oxygenation via femoral venous and arterial access to provide artificial cardiopulmonary circulation as an alternative to traditional ventilation and external cardiac massage

ECPR Purpose

- Improve
 - Outcomes
- Extension
 - Beyond BLS and ACLS for refractory cardiac arrest
- Reversal
 - Management of post resuscitation syndrome
- Bridge
 - Interventional therapies to allow management of potential reversible conditions

ECPR Purpose

- Improving Cardiac Arrest Outcomes
 - 1950's mortality 50%
 Stephenson HE Jr. Ann Surg. 1953; 137: 731–744
 - 1966 original consensus statement on CPR
 National Academy of Sciences–National Research Council
 - Ad Hoc Committee on Cardiopulmonary Resuscitation. Cardiopulmonary resuscitation. *JAMA*. 1966; 198: 372–379 – Currently overall prognosis after ROSC has
 - only minimally improved

ECPR Purpose

- Research focused on improving the rate of ROSC
- Post Resuscitation Syndrome
 - Brain injury
 - Myocardial Dysfunction/Cardiogenic Shock
 - Systemic Ischemia/Reperfusion Response
 - Persistent Precipitating Pathology

Systemic Ischemia/Reperfusion Response

- Most severe state of cardiogenic shock
 - Abrupt cessation of oxygen and nutrient delivery
 Increased oxygen debt
 - Endothelial activation and inflammatory response
 - Multisystem organ failure
- Whole body ischemia/reperfusion
 - Activation of immunological and coagulation pathways
 - Multisystem organ failure

ECPR Purpose

- Potential role for ECMO
 - Extend resuscitation when ROSC cannot be achieved
 - Reverse the consequences of post resuscitation syndrome
 - Increase likelihood of achieving ROSB
 - Allow evaluation and intervention on underlying etiology of cardiac arrest

ECPR Evidence

- No prospective randomized clinical trials
- ESLO ECLS Registry
- · Several small observational studies

	ECPF	R Evi	der	ice		
ECLS Regis International S January, 2016	Summary	Extracorporeal Life Support Organization 2800 Plymouth Rog Building 300, Room 30 Ann Arbor, MI 4810				
	Total Patients	Overall Outcomes tients Survived ECLS		Survived to DC or Transfer		
Neonatal						
Respiratory	28,723	24,155	84%	21,274	74%	
Cardiac	6,269	3,885	62%	2,599	41%	
ECPR	1,254	806	64%	514	41%	
Pediatric						
Respiratory	7,210	4,787	66%	4,155	58%	
Cardiac	8,021	5,341	67%	4,067	51%	
ECPR	2,788	1,532	55%	1,144	41%	
Adult						
Respiratory	9.102	5 989	66%	5 254	58%	
Cardiac	7,850	4,394	56%	3,233	41%	
ECPR	2.379	948	40%	707	30%	
Total	73,596	51,837	70%	42,947	58%	

Case no Log	Table 4 Logistic regression analysis of factors associated with good neurological function at discharge.					
Resusci Amio	ariable	Ode	ds ratio S	95% CI	0.2021	
Lactate (ge (years) PR duration (min)			0.9757-1.1561	0.032 0.0001 0.0009 0.6580	
Coron L	Ise of ECMO	25.		2.6795-241.4981	0.2351	
	centrillation (times)	0.	9907	0.7366-1.3325	0.1709	
Pulm F	emale gender	1.	2560	0.1190-13.2589	0.9025	
Chron L	Ise of therapeutic hypother	mia 1.	1057	0.1870-6.5362	0.8932	
	sults are odds ratios and 95 ine oxygenation.	6(138) 6(138) 2(1228)	2(100) 1(38) 1(30)	#(13.38) 7(11.28) #(13.38)		
Sustained ROSC	R058, n(X)	19(47.53)	19(95.0%)	38(63.33)	0.0009	
PCI IABP		16 (40%) 10 (25%)	12(60%) 10(50%)	28(46.67%) 20(33.3%)	0.2343	
Survival to day?	nuchermit a (b)	11 (27.58)	10(508)	21(358)	0.1512	
Good neurologie	al function at discharge, n (K)	3(7.58)	8 (405)	11(18338)	0.0067	
1 year survival.)		10(258) 3(7.58)	10(50%)	20(33.38)	0.0998	

- · Similar indications as for BLS/ACLS
 - Patient generally healthy prior to cardiac arrest
 - Goals of therapy are curative
 - Cause of cardiac arrest treatable
- When traditional BLS/ACLS strategies have failed
 - Extension of traditional BLS/ACLS
- · In hospital vs out of hospital

ECPR Indications

- ANW in hospital ECPR protocol
 - Age 18-75
 - Arrest of cardiac origin (VT/VF)
 - ETCO2>20
 - Patient on HH4000/5000/5200 or CVICU
 - ECPR candidacy determined at 10 minutes
 - LEVEL 1 ECMO called and patient transferred to cath lab on LUCAS
 - ECMO initiation within 60 minutes of arrest

ECPR Indications

- ANW out of hospital ECPR protocol
 - Age 18-75
 - Witnessed arrest of cardiac origin (VT/VF)
 - No flow of less 5 minutes
 - ETCO2>10
 - Consistent MAP during transport (MAP 45mmHg or SBP 70mmHg)
 - LEVEL-1 ECMO activation of the Cath lab
 - ECMO initiation within 60 minutes of arrest

Summary

- Improving survival following cardiac arrest continues to be challenging
- ECPR can provide an extension to traditional ACLS for refractory cardiac arrest
- ECPR facilitates the management of post resuscitation syndrome and it's consequences
- ECPR facilitates ROSC/ROSB
- ECPR improve both short term and long term outcomes compared to conventional CPR

Summary

- ECPR is associated with improved neurological outcomes compared conventional CPR
- Shortening time of CPR with ECPR (<35 min) is associated with better outcomes
- Cannulation can be challenging
- ECPR provides a bridge to definitive therapy
- ECPR indications are similar to those for BLS/ACLS
- Patient selection important

"It just so happens that your friend here is only **MOSTLY dead**. There's a big difference between **mostly dead** and all **dead**. **Mostly dead** is slightly alive!" -Billy Crystal as Miracle Max The Princess Bride 1987

