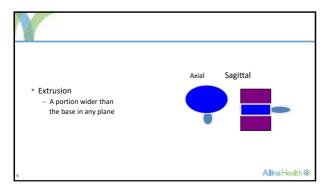
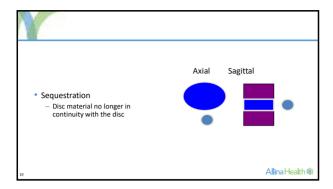
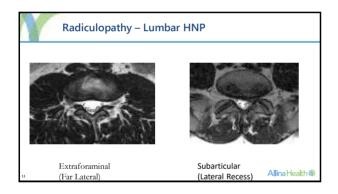
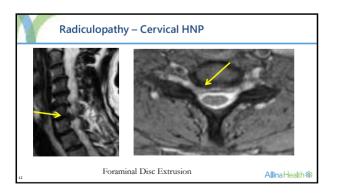

- $^{\bullet}\,$ To outline indications for specific imaging / radiologic tests in diagnosing spine pain.
- To emphasize the **correlation** of imaging studies with <u>clinical symptoms</u> and <u>physical</u>
- To identify subtle findings on imaging studies as guide for surgical referral.
- To identify imaging findings of pathology commonly associated with spine pain.
- To identify imaging findings suggestive unstable spine injury.








Radiculopathy – Lumbar HNP	
• Defining the herniation	
 Protrusion, Extrusion, Sequestration Predicting regression 	
Subligamentous, TransligamentousPredicting regression	
 Zone – Central, Subarticular, Foraminal, Extraforaminal Predicting clinical presentation / pain pattern 	
7	Allina Health ₩

Resorption characteristics – HNP zone

- Natural history of disc herniation
 - Exposure of herniated disc material to the epidural vascular supply enhances potential for resorption.
- The dorsal epidural space has a richer vascular supply than the ventral epidural space

Sang-Ho. SPINE Volume 25. 2000

Allina Health 💏

Resorption characteristics – size and location

- A neovascularized zone infiltrated with macrophages develops in the outermost layer of herniated disc tissue
- Macrophage infiltration seems to be more prominent in large HNP because sequesters have 2-3 times more inflammatory cells than extrusions
- Neovascularization is hindered by ligaments and/or annulus fibrosis

Reijo. Spine. Volume 31. 2006

Allina Health %

	٦	
n		
п		۲.

Resorption characteristics - relation to PLL

- Subligamentous herniations include the extruded or protruded materials beneath the posterior longitudinal ligament (PLL)
- Transligamentous herniations have extruded material partially exposed to the epidural space through the tear of the PLL

Sang-Ho. SPINE Volume 25. 2000

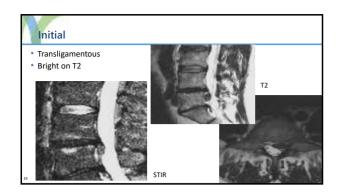
Allina Health 🕷

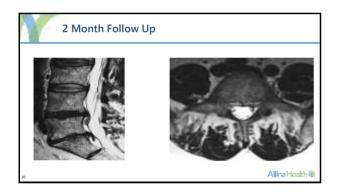
Resorption characteristics - MRI Signal

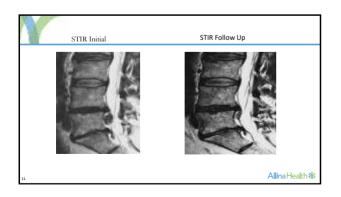
- Increased T2 signal in a herniated disc compared to the parent disc is favorable for regression
- Proteoglycan molecules swell when they are released from the collagen matrix
- Degradation of the molecules causes dehydration of the herniated disc and subsequent size reduction

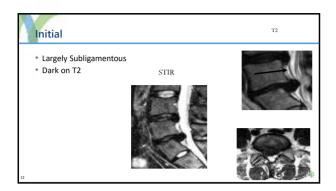
Reijo. SPINE. Volume 31. 2006

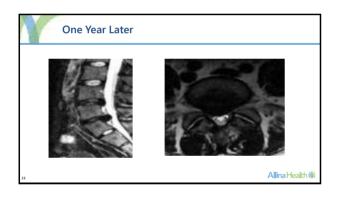
Allina Health 📆

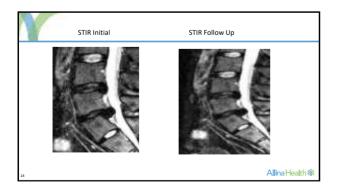



Resorption characteristics – Modic changes


- Modic changes of lumbar endplates are associated with:
 - Poor resorption of disc herniation after conservative treatment
 - Increased cartilage content in herniated material
 - Decreased neovascularization
 - · Decreased macrophage infiltration
 - Decreased expression of matrix metalloproteinase-3 gene (key matrix-degrading enzyme)


Ding et al. Cell Biochem Biophys (2015) 71: 1357.

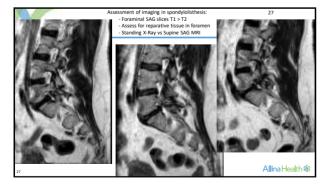

Allina Health %

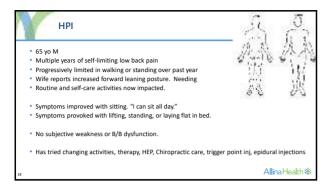


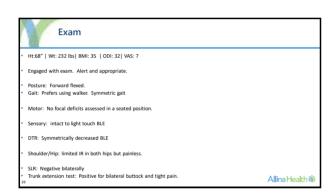
Radiculopathy - clinical perspective

- · "shared decision making"
- The clinical picture and patient goals are paramount.
- As clinicians we help patients in making the right decision...
- Understanding the natural history of disease is therefore critical.

Though these two disc herniations can present with similar radicular pain symptoms, they (often) do not share the same natural history.

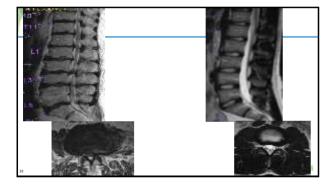



W


Radiculopathy – foraminal narrowing

- Spondylolisthesis
- May be dynamic or static
- Sagittal MRI; X-Rays weightbearing and flexion/extension
- Asymmetric disc space narrowing
 - Assess AP weightbearing X-Ray
 - Can cause foraminal or lateral recess narrowing

Allina Health 📆



Congenital Spinal Stenosis

- · Narrow canal resulting from congenitally short pedicles.
 - Central canal ovoid in shape
 - Canal with smaller cross-sectional area
- Often become symptomatic in the third, fourth, or fifth decade
- Relatively few degenerative changes at time of Sx onset
- Mild degenerative changes, that would otherwise be well-tolerated, cause clinically symptomatic canal narrowing in this population.

Katz, et al. N Engl I Med 2008;358;818-25.

Allina Health 🕷

Acquired Degenerative Stenosis

- Most frequently observed type of spinal stenosis.
- Arises in conjunction with age-associated degeneration of the lumbar disks and facet joints.
- Usually slowly progressive
- Usually presents later in life compared to congenital stenosis.
- Often more focal; involves fewer spinal segments compared to congenital stenosis

Katz, et al. N Engl J Med 2008;358:818-25

Allina Health 💏

Spinal Canal Stenosis – clinical correlation

- Canal volume on axial MRI correlated with walking tolerance
 - The smaller the minimum cross-sectional area (mCSA), the shorter the walking distance before onset of pseudoclaudication
 - -≥ 500 m, average mCSA mCSA 68.8 mm²
 - < 500 m, average mCSA 53.5 mm²
 - mCSA between these two groups was significantly different (p < 0.001)
 - Avg mCSA was not correlated with gender, age, or vertebral level

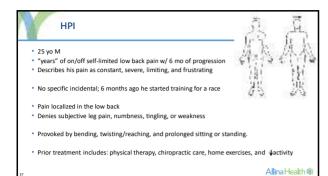
Ogikubo, O. et al, Spine. 2007. 32(13); 1423-1428

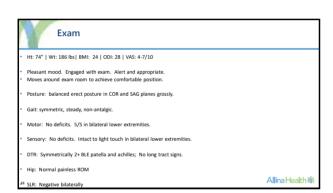
Allina Health 🕷

Spinal Canal Stenosis

- $^{\rm \bullet}$ Findings suggest the threshold for clinically significant stenosis is about 70 ${\rm mm}^2$
- Other studies: neurogenic claudication related to spinal canal stenosis occurs between 60 and 80 mm²

Ogikubo, O. et al, Spine. 2007. 32(13); 1423-1428


Allina Health 💏



Spinal Stenosis – clinical perspective

- Slowly progressive
- Sx are often a combination of radicular and neuroclaudicatory
- Management is usually a quality of life concern.
- Very rarely a cause of neurogenic bowel/bladder dysfunction.
- DDx: vascular claudication, neuromuscular disorders, etc.

Allina Health %

Axial back pain - Disc

- · Disc features most closely associated with pain
 - Herniation
 - Narrowing
 - Radial tears (peripheral in particular)
- · Features variably associated with pain
 - Endplate irregularity (may be painful when acute)
 - Schmorl's nodes (may be painful when acute)
- Not associated with pain
 - Signal intensity

Adams M. SPINE. Volume 31. 2006

Allina Health 🕷

Prevalence in Asymptomatic Patients

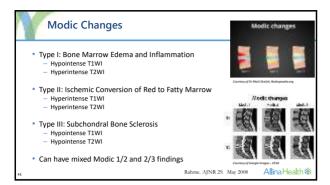
"Bulging": 10% to 81%Protrusion: 3% to 63%Extrusion: 0% to 24%

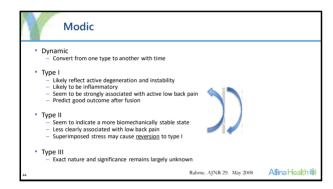
• Decreased MRI T2 signal: 20% to 83%

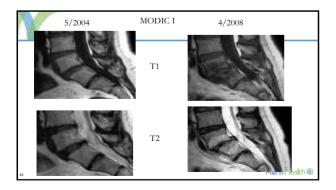
Disc Narrowing: 3% to 56%Annular Tears: 6% to 56%Schmorl's Node: 8% to 19%

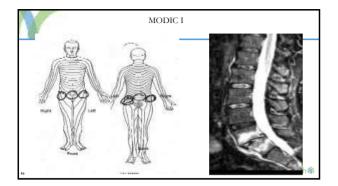
Battie et al. Spine Volume 29. 2004

Allina Health 💏

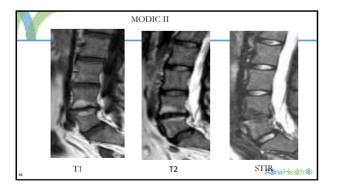


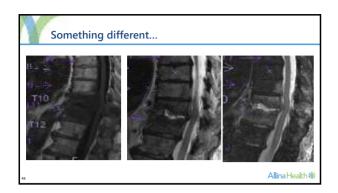

Disc Height Loss

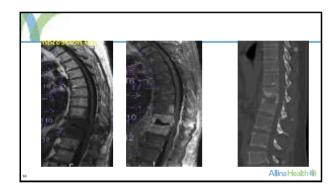

- Loss of annulus height increases the mechanical load on the posterior elements.
- Narrowed discs
 - → Facet osteoarthritis
 - → Neural foraminal narrowing

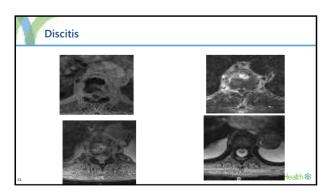

Howard. SPINE Volume 29. 2004

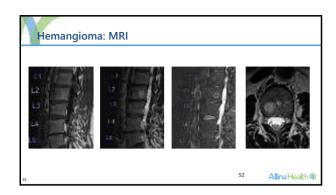
Allina Health 💏

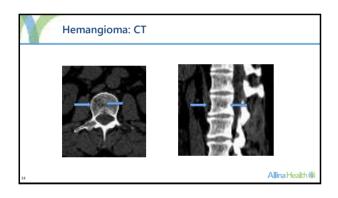


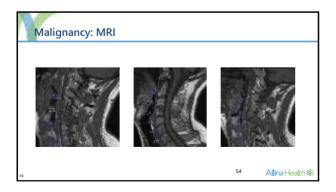


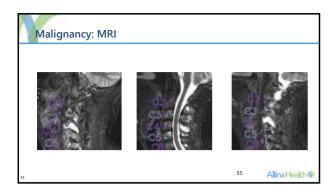


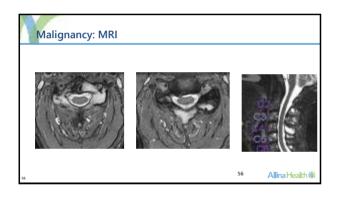


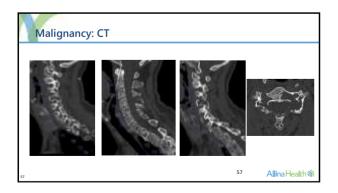


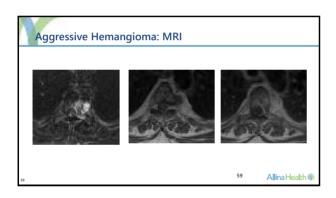


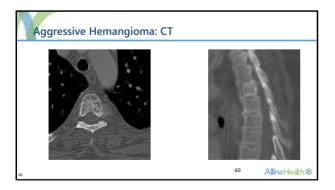












Intraosseous Hemangioma

- Benign lesion composed of blood vessels
- Most commonly in the veterbral bodies but can originate in posterior elements
- 33% are multifocal
- Classic appearance is bright on T1 and T2
- Coarse trabeculations=corduroy pattern
- Typically incidental

Allina Health 💏

Intraosseous Hemangioma

- Asymptomatic lesions are not treated
- Rarely can be associated with fracture
- Rarely associated with diffuse infiltration of bone or soft tissue
- May require bx
- Embolization
- Resection

Allina Health 📆

39 yo F

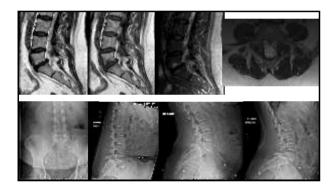
- 10+ years of LBP previously intermittent, now constant and limiting.
- 2-3 years of radiating right leg pain (infrequently experiences left leg pain)
- Symptoms progressively over prior 2 years.
 Limited by both back and right leg pain.
- Worse with prolonged activity, lifting, bending, and standing.
 Partial relief with laying supine
- Denies subjective weakness.
- Has tried limiting activity, oral steroids, NSAIDs, narcotics, muscle relaxers, physical therapy and ESIs.

Allina Health 爺

Exam – stay brief Ht:65" | Wt: 178 lbs | BMI: 29.7 | ODI: 50 | VAS back: 9, VAS leg: 7 Appears to have pain. Engaged with exam. Alert and appropriate.

Posture: Erect posture

Trunk ROM: Avoids both extension and deep flexion

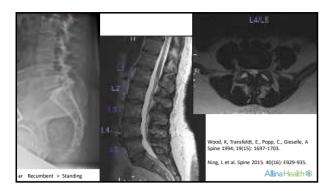

Motor: 4/5 right EHL and Peroneal, hip Abduction along with remainder of motor exam is intact

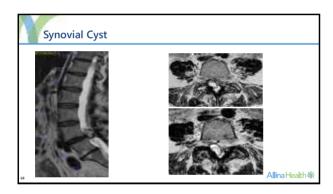
Sensory: decreased anterolateral lower leg

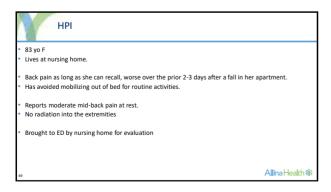
Hip: normal painless ROM

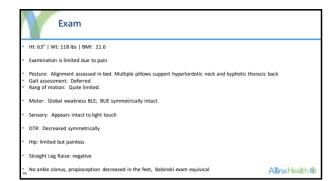
SLR: positive for right leg pain

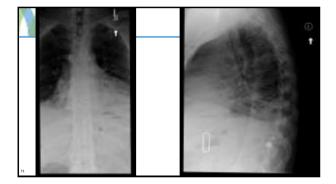
Allina Health 💏

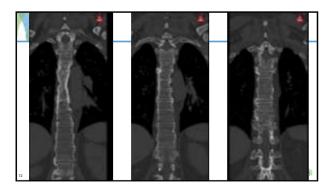


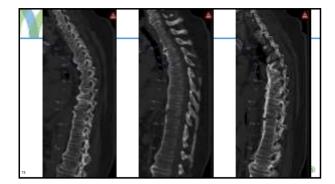


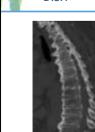

Axial back pain - segmental instability


- Dynamic instability
 - Failure of posterior elements
 - Facet, Pars interarticularis, Posterior ligamentous complex
 Failure of disc integrity
- Subtle (relative) instability
 - "Vacuum" disc
 - Best assessed on supine CT or extension X-Ray
- Synovial facet cyst
 Excess facet motion → facet capsule hypertrophy → cyst enlargement.
 Can have thin or thick walls.


 Can have thin or thick walls.







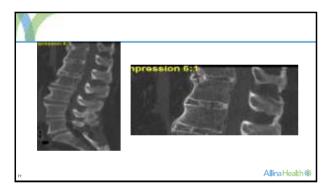
	ъ,	
г.		
1		σ.
		,

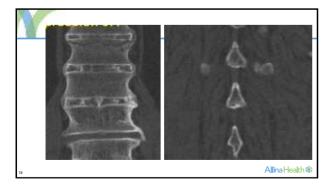
Ankylosing Spine Disorders

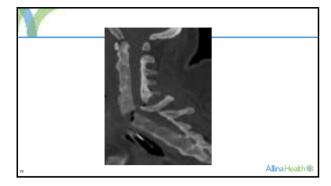
- Two primary types
- Ankylosing Spondylitis (AS)
- Diffuse idiopathic skeletal hyperostosis (DISH)
- Both are associated with poor bone quality
 - Stress Shielding
- Fractures are highly unstable
 - "long bone fracture" analogous to a femur fracture
- Long lever arms of force above and below fracture site

Allina Health 📆

DISH


- "Flowing" anterior vertebral osteophtyes
- Minimal disc disease
- Facet arthropathy absent facet ankylosis


Allina Health 📆


Ankylosing Spondylitis

- Thin ossification at vertebral margins
- "Bamboo" spine
- Ankylosed facets
- Accelerated disc degeneration in unfused segments

Ankylosing Spinal Disorders

- 122 spine fractures in 112 consecutive pts over a 7 year period
- Ground level fall, most common injury (39%)
- 81% at least 1 major medical comorbidity
 - HTN 41%

 - Cardiac dz 33%
 - Pulmonary dz 15% - Morbid obesity 13%
- 15% too medically unstable for surgery

Caron T. SPINE. Vol 35. 2010 Allina Health 📆

Ankylosing Spine Disorders

- 58% had a spinal cord injury
- 67% required surgery
- 19% had a delayed diagnosis of fx - Resulting neuro compromise in 81%
- Fx location
 - 55% C-spine (75% with SCI)
 - 21% T-Spine (33% with SCI)
 - 16% T-L Spine (23% with SCI) - 8% L spine (33% with SCI)

Caron T. SPINE. Vol 35. 2010 Allina Health

•THANK YOU	
Allina Health爺	
	-
	7
TO CONTACT ME	
• Eiman Shafa, MD – 612-775-6200	
— eshafa@tcspine.com	